p-ADIC EISENSTEIN-KRONECKER FUNCTIONS AND THE ELLIPTIC POLYLOGARITHM FOR CM ELLIPTIC CURVES

نویسندگان

  • KENICHI BANNAI
  • SHINICHI KOBAYASHI
چکیده

In this paper, we construct p-adic analogues of the Kronecker double series, which we call the Eisenstein-Kronecker series, as Coleman functions on an elliptic curve with complex multiplication. We then show that the periods of the specialization of the p-adic elliptic polylogarithm sheaf to arbitrary non-zero points of the elliptic curve may be expressed using these functions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ALGEBRAIC THETA FUNCTIONS AND THE p-ADIC INTERPOLATION OF EISENSTEIN-KRONECKER NUMBERS

We study the properties of Eisenstein-Kronecker numbers, which are related to special values of Hecke L-function of imaginary quadratic fields. We prove that the generating function of these numbers is a reduced (normalized or canonical in some literature) theta function associated to the Poincaré bundle of an elliptic curve. We introduce general methods to study the algebraic and p-adic proper...

متن کامل

ALGEBRAIC THETA FUNCTIONS AND p-ADIC INTERPOLATION OF EISENSTEIN-KRONECKER NUMBERS

We study the properties of Eisenstein-Kronecker numbers, which are related to special values of Hecke L-function of imaginary quadratic fields. We prove that the generating function of these numbers is a reduced (normalized or canonical in some literature) theta function associated to the Poincaré bundle of an elliptic curve. We introduce general methods to study the algebraic and p-adic proper...

متن کامل

p-adic interpolation of half-integral weight modular forms

The p-adic interpolation of modular forms on congruence subgroups of SL2(Z) has been succesfully used in the past to interpolate values of L-series. In [12], Serre interpolated the values at negative integers of the ζ-series of a totally real number field (in fact of L-series of powers of the Teichmuller character) by interpolating Eisenstein series, which are holomorphic modular forms, and loo...

متن کامل

Elliptic units for real quadratic fields

1. A review of the classical setting 2. Elliptic units for real quadratic fields 2.1. p-adic measures 2.2. Double integrals 2.3. Splitting a two-cocycle 2.4. The main conjecture 2.5. Modular symbols and Dedekind sums 2.6. Measures and the Bruhat-Tits tree 2.7. Indefinite integrals 2.8. The action of complex conjugation and of Up 3. Special values of zeta functions 3.1. The zeta function 3.2. Va...

متن کامل

On the transfer congruence between p-adic Hecke L-functions

We prove the transfer congruence between p-adic Hecke L-functions for CM fields over cyclotomic extensions, which is a non-abelian generalization of the Kummer’s congruence. The ingredients of the proof include the comparison between Hilbert modular varieties, the q-expansion principle, and some modification of Hsieh’s Whittaker model for Katz’ Eisenstein series. As a first application, we prov...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008